Researchers pioneer production of CAR T-cells using high-density microfluidic bioreactor

Originally published by Singapore-MIT Alliance for Research and Technology on June 27, 2024

SMART researcher Dr. Wei-Xiang Sin holding the microfluidic chip within which T cells are activated, transduced, and expanded in a 2 milliliter growth chamber. Credit: SMART CAMP

Researchers have developed a novel method capable of producing clinical doses of viable autologous chimeric antigen receptor (CAR) T-cells in a ultra-small automated closed-system microfluidic chip, roughly the size of a pack of cards.

The team from the Critical Analytics for Manufacturing Personalized-Medicine (CAMP) Interdisciplinary Research Group (IRG) at Singapore-MIT Alliance for Research and Technology (SMART), MIT's research enterprise in Singapore, collaborated with researchers from Duke-NUS Medical School (Duke-NUS), Institute of Molecular and Cell Biology (IMCB) at the Agency for Science, Technology and Research (A*STAR), KK Women's & Children's Hospital (KKH) and Singapore General Hospital (SGH).

This method is the first time that a microbioreactor is used in the production of autologous cell therapy products. Specifically, the novel method was successfully used to manufacture and expand CAR-T cells that are as effective as cells produced using existing systems in a smaller footprint and less space, and using fewer seeding cell numbers and cell manufacturing reagents.

This could lead to more efficient and affordable methods of scaling-out autologous cell therapy manufacturing, and could even potentially enable point-of-care manufacturing of CAR T-cells outside of a laboratory setting—such as in hospitals and wards.

Read more

Comments

Popular posts from this blog

Research finds resin that destroys coronavirus on plastic surfaces

Engineered Rabies Virus Illuminates Neural Circuitry

Study discovers cellular activity that hints recycling is in our DNA