Penn Scientists Create Novel Technique to Form Human Artificial Chromosomes

Researchers say the method will allow for more efficient laboratory research and expand gene therapy.

Originally published at Penn Medicine News, on March 21, 2024


 

PHILADELPHIA – Human artificial chromosomes (HACs) capable of working within human cells could power advanced gene therapies, including those addressing some cancers, along with many laboratory applications, though serious technical obstacles have hindered their development. Now a team led by researchers at the Perelman School of Medicine at the University of Pennsylvania has made a significant breakthrough in this field that effectively bypasses a common stumbling block.

In a study published last March, 21, in Science, the researchers explained how they devised an efficient technique for making HACs from single, long constructs of designer DNA. Prior methods for making HACs have been limited by the fact that the DNA constructs used to make them tend to join together—“multimerize”—in unpredictably long series and with unpredictable rearrangements. The new method allows HACs to be crafted more quickly and precisely, which, in turn, will directly speed up the rate at which DNA research can be done. In time, with an effective delivery system, this technique could lead to better engineered cell therapies for diseases like cancer.

Read more

 

Comments

Popular posts from this blog

Research finds resin that destroys coronavirus on plastic surfaces

Engineered Rabies Virus Illuminates Neural Circuitry

Study discovers cellular activity that hints recycling is in our DNA