New fossil discovery sheds light on the early evolution of animal nervous systems

Groundbreaking research uncovers the origins of the ventral nerve cord in early moulting animals

Originally published by by , on:13 January 2025

Tubular incomplete specimens of Eopriapulites sphinx from the early Cambrian Kuanchuanpu Formation, showing their ventral nerve cord. Credit: Science Advances (2025). DOI: 10.1126/sciadv.adr0896

An international team of scientists has uncovered a fascinating piece of the evolutionary puzzle: how the ventral nerve cord, a key component of the central nervous system, evolved in ecdysozoan animals, a group that includes insects, nematodes, and priapulid worms. Their findings, published in Science Advances, provide valuable insights into the origins of these structures in the basal Cambrian period

The research team, comprising Dr Deng Wang (Northwest University), Dr Jean Vannier (Université de Lyon), Dr Chema Martin-Durán (Queen Mary University of London), and Dr María Herranz (Rey Juan Carlos University), analysed exceptionally well-preserved fossils from key Cambrian deposits. These fossils include representatives of the early-evolving Scalidophora, a subgroup of Ecdysozoa, offering a rare glimpse into the nervous system architecture of ancient animals. 

Ecdysozoans include arthropods (such as insects and crabs), nematodes (roundworms), and smaller groups like kinorhynchs (“mud dragons”) and priapulids (“penis worms”). Their central nervous systems, which include the brain and ventral nerve cord, have long intrigued scientists seeking to understand the evolutionary relationships between these groups.

Read more

 

Comments

Popular posts from this blog

First map of every neuron in an adult brain has been produced for a fruit fly

Research finds resin that destroys coronavirus on plastic surfaces

Engineered Rabies Virus Illuminates Neural Circuitry