Research finds resin that destroys coronavirus on plastic surfaces

Originally published by University of Jyväskylä, on January 30, 2024

Studying the impact of rosin-functionalized plastic and standard LDPE on the structure of HCoV-OC43 using (A) TEM and (B) AFM in liquid. The scale bar corresponds to 100 nm and 1 µm in the TEM and AFM images, respectively. In panel B, the blue circle highlights a doughnut-shaped virus. (C) The histogram derived from the AFM images illustrates the average size distribution of the height of individual viruses after being flushed from their respective surfaces. Credit: Microbiology Spectrum (2024). DOI: 10.1128/spectrum.03008-23

Researchers at the University of Jyväskylä, Finland, are currently developing anti-viral surfaces to decrease the spread of infectious diseases. A recent study published in Microbiology Spectrum found that a resin ingredient is effective against coronaviruses and strongly decreases their infectivity on plastic surfaces.

Viruses may persist on solid surfaces for long periods, which may contribute to an increased risk for infection. The research group of the Professor of Cell and Molecular Biology Varpu Marjomäki from the University of Jyväskylä, is investigating how different surfaces and materials could decrease the spread of viral diseases. For example, they are studying how long corona viruses survive on different surfaces when humidity and temperature are varying.

Read more

Comments

Popular posts from this blog

First map of every neuron in an adult brain has been produced for a fruit fly

Engineered Rabies Virus Illuminates Neural Circuitry