Decoding the complexity of Alzheimer's disease

Originally published by Massachusetts Institute of Technology, on September 28, 2023

Credit: Wikimedia Commons

Alzheimer's disease affects more than 6 million people in the United States, and there are very few FDA-approved treatments that can slow the progression of the disease.

In hopes of discovering new targets for potential Alzheimer's treatments, MIT researchers have performed the broadest analysis yet of the genomic, epigenomic, and transcriptomic changes that occur in every cell type in the brains of Alzheimer's patients.

Using more than 2 million cells from more than 400 postmortem brain samples, the researchers analyzed how gene expression is disrupted as Alzheimer's progresses. They also tracked changes in cells' epigenomic modifications, which help to determine which genes are turned on or off in a particular cell. Together, these approaches offer the most detailed picture yet of the genetic and molecular underpinnings of Alzheimer's.

The researchers report their findings in a set of four papers published in Cell. The studies were led by Li-Huei Tsai, director of MIT's Picower Institute for Learning and Memory, and Manolis Kellis, a professor of computer science in MIT's Computer Science and Artificial Intelligence Laboratory (CSAIL) and a member of the Broad Institute of MIT and Harvard.

Read more

Comments

Popular posts from this blog

First map of every neuron in an adult brain has been produced for a fruit fly

Research finds resin that destroys coronavirus on plastic surfaces

Engineered Rabies Virus Illuminates Neural Circuitry